博客
关于我
希尔排序
阅读量:313 次
发布时间:2019-03-03

本文共 710 字,大约阅读时间需要 2 分钟。

希尔排序

希尔排序是一种高效的稳定排序算法,通过将数组分割成若干小组进行插入排序,从而显著提高插入排序的效率。

算法原理

希尔排序的核心思想是将数组分割成多个子序列,每个子序列的元素距离为一定的步长。然后对每个子序列进行直接插入排序,最后再对整个数组进行插入排序,使得整个数组变得有序。

这种方法通过将大规模排序问题分解为多个小规模排序问题,从而降低了排序的时间复杂度。

实现步骤

希尔排序的实现可以分为以下几个步骤:

  • 确定步长:首先选择一个小于数组长度的整数d1,作为第一个增量。将所有距离为d1倍数的元素放在同一个组中,完成数组的分割。
  • 排序子序列:对每个子序列进行直接插入排序。
  • 重复步长递减:将d1替换为更小的增量d2(d2 < d1),重复上述步骤,直到增量dt = 1,所有记录都被放在同一组中进行最终的插入排序。
  • 步长取值

    希尔排序的步长选择对算法的时间复杂度影响至关重要。最初,希尔建议使用n/2、n/4、n/8等递减的增量,这种方法的时间复杂度为O(n²)。后来,Hibbard提出使用2^k - 1这样的增量序列,时间复杂度为O(n³/²)。实验结果表明,使用1、5、9、41、109等步长的序列,排序效率更高。

    简单分析

    • 时间复杂度:在最坏情况下,希尔排序的时间复杂度取决于步长的选择。如果使用n/2的增量,时间复杂度为O(n²);如果使用2^k - 1的增量,时间复杂度为O(n³/²)。
    • 空间复杂度:希尔排序的空间复杂度为O(1),因为它并未使用额外的存储空间。
    • 稳定性:希尔排序不满足稳定排序的要求。

    通过合理选择步长和优化实现细节,希尔排序能够在保持较低时间复杂度的同时,显著提升排序效率。

    转载地址:http://mlfq.baihongyu.com/

    你可能感兴趣的文章
    NLP 基于kashgari和BERT实现中文命名实体识别(NER)
    查看>>
    NLP 模型中的偏差和公平性检测
    查看>>
    Vue3.0 性能提升主要是通过哪几方面体现的?
    查看>>
    NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
    查看>>
    NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
    查看>>
    NLP三大特征抽取器:CNN、RNN与Transformer全面解析
    查看>>
    NLP学习笔记:使用 Python 进行NLTK
    查看>>
    NLP度量指标BELU真的完美么?
    查看>>
    NLP的不同研究领域和最新发展的概述
    查看>>
    NLP的神经网络训练的新模式
    查看>>
    NLP采用Bert进行简单文本情感分类
    查看>>
    NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
    查看>>
    NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
    查看>>
    NLP:使用 SciKit Learn 的文本矢量化方法
    查看>>
    nmap 使用方法详细介绍
    查看>>
    Nmap扫描教程之Nmap基础知识
    查看>>
    nmap指纹识别要点以及又快又准之方法
    查看>>
    Nmap渗透测试指南之指纹识别与探测、伺机而动
    查看>>
    Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
    查看>>
    NMAP网络扫描工具的安装与使用
    查看>>